Local Associated Features for Pedestrian Detection
نویسندگان
چکیده
Local features are usually used to describe pedestrian appearance. While most of existing pedestrian detection methods don’t make full use of context cues, such as associated relationships between local different locations. This paper proposes two novel kinds of local associated features, gradient orientation associated feature (GOAF) and local difference of ACF (ACF-LD), to exploit context information. In our work, pedestrian samples are enlarged to contain some background regions besides human body, and GOAF, ACF and ACF-LD are combined together to describe pedestrian sample. GOAF are constructed by encoding gradient orientation features from two different positions into a single value. These two positions are come from different distance and different direction. For ACF-LD, the sample is divided into several sub regions and the ACF difference matrixes between these areas are computed to exploit the associated information between pedestrian and surrounding background. The proposed local associated features can provide complementary information for detection tasks. Finally, these features are fused with ACF to form candidate feature pool, and AdaBoost is used to select features and train a cascaded classifier of depth-two decision trees. Experimental results on two public datasets show that the proposed framework can achieve promising results compared with the state of the arts.
منابع مشابه
Pedestrian Detection in Infrared Outdoor Images Based on Atmospheric Situation Estimation
Observation in absolute darkness and daytime under every atmospheric situation is one of the advantages of thermal imaging systems. In spite of increasing trend of using these systems, there are still lots of difficulties in analysing thermal images due to the variable features of pedestrians and atmospheric situations. In this paper an efficient method is proposed for detecting pedestrians in ...
متن کاملLocal Boosted Features for Pedestrian Detection
The present paper addresses pedestrian detection using local boosted features that are learned from a small set of training images. Our contribution is to use two boosting steps. The first one learns discriminant local features corresponding to pedestrian parts and the second one selects and combines these boosted features into a robust class classifier. In contrast of other works, our features...
متن کاملExploring Prior Knowledge for Pedestrian Detection
Pedestrian detection is a classical and hot issue in object detection. Many approaches have been proposed in this area. However, it remains a challenging problem due to the variances in lighting conditions, scene structures, clothes, view angles, postures, scales, occlusions, etc. Previous survey [1] has summarized that using better features plays an important role in improving detection qualit...
متن کاملA Pedestrian Detection Method Based on the HOG-LBP Feature and Gentle AdaBoost
In this paper, we present a pedestrian detection method based on the combination of Histograms of Oriented Gradient (HOG) feature and uniform local binary pattern (LBP) feature, which can detect pedestrian accurately. To the problem of low recognition rate for a single feature, we combine contour information and texture information, and propose the cascade of the two types of features, HOG feat...
متن کاملAn Evaluation of Local Shape-Based Features for Pedestrian Detection
Pedestrian detection in real world scenes is a challenging problem. In recent years a variety of approaches have been proposed, and impressive results have been reported on a variety of databases. This paper systematically evaluates (1) various local shape descriptors, namely Shape Context and Local Chamfer descriptor and (2) four different interest point detectors for the detection of pedestri...
متن کامل